

MEDICINAL IMPORTANCE AND BIOACTIVE CONSTITUENTS OF BAUHINIA TOMENTOSA L.: AN UPDATED REVIEW

Memona Fatima*, Sualeha Jabeen, Maaz uddin Ahmed

Department of Pharmacognosy, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi, 75270, Pakistan

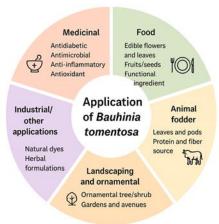
Abstract: Bauhinia tomentosa L. is a small tree belongs to the Fabaceae family. It is distributed in Asia, Africa, North America, and Oceania. The Bauhinia tomentosa is commonly known as Yellow Bauhinia, Yellow Orchid tree and Yellow Bell Orchid tree. The plant is reported to contain proteins, amino acids, minerals, alkaloids, flavonoids, phytosterols, saponins, tannins, phenolic compounds, fixed oils and fats. Pharmacological studies proved its anti-oxidant, anti-bacterial, anti-lipidemic, anti-ulcer, immunomodulatory, anti-diarrhoeal, anti-microbial and anti-diabetic activities.

Key words: Bauhinia tomentosa, pharmacology, phytochemistry, Anti-ulcer

INTRODUCTION

Genus Bauhinia hasplayed a significant humancivilization since ancient times. Genus Bauhinia iscomprised of trees and shrubs which grow in warm climate. About 300 species of Bauhinia arefound in tropical regions with 5-7 m tall tree in deciduous forests.(Fatima et al., 2021). Bauhinia tomentosa L. commonly known as Yellow bell orchid tree is one of the best, versatile, used household remedy for many manifestations. The generic name commemorates the Bauhin brothers Jean and Gaspard, the swiss botanists; the two lobes of the leaf exemplify the two brothers. Tomentosa derived from tomentose, meaning with dense, interwoven hairs (Manodeep et al., 2011). It is usually a scrambling, many stemmed shrub or small tree reaching 4m (max.8) in height, the branches often drooping, with many slender twigs (Swarnalatha et al., 2010). Leaves are deeply divided for almost half their length, with a small apical appendage between the lobes; each lobe is oval to almost elliptic, most often small about 2.5 x 2.5 cm, but may be up to 8cm, the colour of the leaf is pale fresh green. The apex of each lobe is broadly tapered. The base of the whole leaf is shallowly lobed and the length of the leaf stalk is usually around 10-30 mm long (Manodeep et al., 2011).

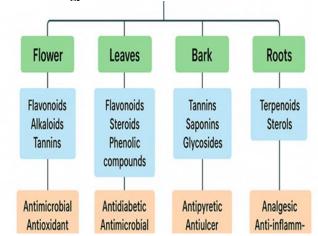
Taxonomy classification (Grace et al., 2014)


Kingdom	Plantae
phylum	Tracheophyta
Class	Magnoliopsida
Subclass	Rosidae
Order:	Fabales
Family	Fabaceae
Genus	Bauhinia
Species	tomentosa

Vernacular name (Grace et al., 2014)

, ((
English	Butterfly Tree
Tamil	Kanjana
Sanskrit	Phagulu
Hindi	Kachnar
Urdu	Kachnar/Kachnal

Ethanopharmacognosy (Manodeep et al., 2011)


Parts	Uses
Seed	Tonic and aphrodisiac, anti diabetic
Fruit	Diuretic
Leaf	Abscesses
Root	Abdominal troubles, anthelmintic
Bark	Wounds, tumours
Plant	Snake bite, scorpion sting
flowers	Dysentery

Parts	Phytoconstituents
Roots	Carbohydrates, reducing sugars, fixed oil/ fats, gums, mucilage, steroid and flavonoids (Manodeep <i>et al.</i> , 2011), tannins, saponins, glycosides, alkaloids(Shanthini & Sameemabegum, 2023).
Leaves (ethanolic)	Rutin, phenols, tannins, flavonoids, saponins, steroids, carbohydrates (Shanthini & Sameemabegum, 2023), kaempferol-7-0-rhamnoside, kaempferol-3-0-glucoside, quercitin-3-0-glucoside and quercitin-3-0-rutinoside (Gautam <i>et al.</i> , 2012)
Flower (aqueous, methanolic)	Carbohydrates, glycosides, alkaloids, phytosteroids, flavanoids, saponins, tannins, phenolic compounds, fixed oils and fats, 1-(2'-

	hydroxy-4'-methoxyphenyl)-3-(4"-	
	methoxyphenyl)-2-hydroxypropane-	
	1,3-dione,5-hydroxyflavone3,5,7,3',4'-	
	pentahydroxyflavone,3,5,7,2',4'-	
	pentahydroxyflavone,5,7,3',4'-	
	tetrahydroxyflavone-3-O-rhamnoside	
	(Manodeep et al., 2011)	
Seeds(8%	Ebony oil, protein, pentosan	
ethanolic	,mucilage and saponins (Grace et al.,	
H_2SO_4 ,	2014), crude protein, lipids, flavonoids	
ethanolic	(Shanthini & Sameemabegum, 2023).	
extract)	-	
Fruits	Carbohydrates, proteins, tannins,	
	alkaloids, flavonoids (Shanthini &	
	Sameemabegum, 2023).	
Whole plant	Alkaloids, steroids, flavonoids, tannins,	
	phenolic compounds (Shanthini &	
	Sameemabegum, 2023).	

Pharmacology:

Parts	Extracts	Bioactivity
	Aqeous, chloroform, methanol, ethanol, petroleum ether, ethyl acetate Petroleum ether,	Antibacterial (Mythreyi <i>et al.</i> , 2005) Anthelmintic,
	chloroform, ethyl acetate, methanol	(Shanthini & Sameemabegum, 2023)
Leaves	Ethanol	Antihistaminic, Anti- inflammatory, Antigoitrogenic (Shanthini & Sameemabegum, 2023)
	Aqueous, ethanol	Anticonvulsant (Risa et al., 2004)
	Ethanol	Anti-anxiety, Anticatatonic, Antidepressant (Sathya <i>et al.</i> , 2011)

	1	
	Aqueous	Antidiabetic (Devaki et al., 2011)
	Methanol	Anti-ulcerative colitis (Kannan and Guruvayoorappan, 2013)
		Nephroprotective (Kannan <i>et al.</i> , 2016)
		Anticancer (Shanthini & Sameemabegum, 2023)
Roots	Ethyl acetate, hexane, methanol	Antibacterial (Dugasani et al., 2010)
	Aqueous, ethanol, ethyl acetate, hexane, methanol	Antifungal (Dugasani et al., 2010)
	Ethanol, aqueous	Antihelminthic (Aditya et al., 2013)
	Aqueous, methanol ethanol	Analgesic (Tiwari and Singh, 2013) Anticancer (Shanthiniand
	Petroleum ether	Sameemabegum, 2023) Antidiabetic (Kaur <i>et</i>
	Methanol	al., 2011) Antinociceptive
Flower		Antipyretic (Tiwari and Singh, 2015)
Flower	Aqueous	Antioxidant (Banerjee and De, 2014)
	Ethanol	Antidiabetic, Antihyper-lipidemic (Mannangatti <i>et al.</i> , 2010a)
		Antioxidant (Mannangatti <i>et al.</i> , 2010b) Wound healing
		(Shanthiniand Sameemabegum, 2023)
Stem	Methanol	Antinociceptive, Antipyretic (Tiwari and Singh, 2015)
	Aqueous, ethanol	Antidiabetic (Tiwari and Singh, 2014)
	Ethanolic	Nephroprotective (Shanthiniand Sameemabegum, 2023)
	Aqueous and alcoholic	Antiulcer (Shanthini and Sameemabegum, 2023)

	Ethanol	Hepatoprotective (Shanthini and Sameemabegum,
Whole plant	Ethanolic	Antiarthritic Shanthiniand Sameemabegum, 2023)

CONCLUSIONS

This review revealed that *Bauhinia tomentosa* L. possesses a wide range of ethnomedicinal uses, with scientific evidence supporting some of these traditional applications. Hence, further bioactivities and phytochemical studies should be conducted to produce more scientific evidence to confirm the ethnomedicinal uses for standardization, safety, and efficacy purposes. Isolation and characterization of the bioactive compounds from this plant may provide promising lead molecules for future research on diseases such as cancer. Once identified, these compounds could be synthesized in the laboratory to enable large-scale production.

Conflict of interest

Authors declare no conflict of interest

REFERENCES

- Aditya P, K. Pandurang, D. Atul, K.R. Gajanan, P. Prashant, H. Pravin and J. Prasad (2013). Comparative evaluation of in-vitro anti-helminthic activity of Bauhinia tomentosa. Int.. J. Drug Dev. Res.., 5, 109-114.
- Banerjee A and B De (2014). Antioxidant activity of ethnomedicinally used flowers of West Bengal, India. Int. J. Pharmacogn Phytochem. Res.., 6, 622-635.
- Devaki K, U. Beulah, G. Akila, M. Sunitha, R. Narmadha and V. K. Goplakrishnan (2011) Effect of aqueous leaf extract of B.tomentosa on GTT of normal and diabetic rats. Pharmacologyonline., 3, 195-202.
- Dugasani S., M.K. Balijepalli, S. Tandra and M.R. Pichika (2010) Antimicrobial activity of Bauhinia tomentosa and Bauhinia vahlii roots. Pharmacogn. Mag., 6, 204-207.
- Fatima, M., Ahmed S., Siddiqui M. U. A. and M. M. Ul-Hasan (2021) Medicinal uses, phytochemistry and pharmacology of Bauhinia racemosa lam. J. Pharmacogn. Phytochem., 10, 121-124.
- Gautam, G.K., S.S. Mishra, A. Kumar, S.K. Mishra and S.D. Gupta (2012) Phytochemical evaluation of the ethanolic extracts of Bauhinia tomentosa Linn. (Root). Int. J. of Pharm. & Life Sci., 3, 1675-1676.
- Grace, N.R.A., Swaroop, S.M., and Lakshmi N.V. (2014). A Review on bauhinia tomentosa Linn. Int J.Uni. Pharm. Sci. 3, 296-304.
- Kannan N., K.M. Sakthivel and C. Guruvayoorappan (2016) Nephroprotective effect of Bauhinia tomentosa Linn against cisplatin-induced renal damage. J. Environ. Pathol. Toxicol. Oncol., 35, 99-107.
- Kannan, N. and C. Guruvayoorappan (2013) Protective effect of Bauhinia tomentosa on acetic acid induced ulcerative

- colitis by regulating antioxidant and inflammatory mediators. Int. Immunopharmacol., 16, 57-66.
- Kaur, A.K., S..K. Jain, A. Gupta, S.K. Gupta, M. Bansal and P. K. Sharma (2011) Antidiabetic activity of Bauhinia tomentosa Linn. roots extract in alloxan induced diabetic rats. Der Pharmacia Lettre., 3, 256-259
- Mannangatti, V., B. Ayyasamy, M. Rangasamy and N.S. Kumar (2010) Antioxidant potential of ethanolic extract of Bauhinia tomentosa (Linn) flower. Res. J. Pharm., Biol. Chem. Sci., 1, 143-147.
- Mannangatti, V., B. Ayyasamy, M. Rangasamy, B. Emin and S. K. Natesan (2010)Anti-hyperglycemic and antilipidemic activity of ethanolic extract of Bauhinia tomentosa (Linn) flower in normal and streptozotocininduced diabetic rats. J. Global Pharma Technol., 2, 71-76.
- Manodeep C, J. Anju and K.V. Jagdish (2011) Bauhinia tomentosa: A Phytopharmacological review. Int. Res. J. pharma., 2, 128-131.
- Mythreyi, R., M. Murugan, P. Muthusamy and S. Venkatesh (2005) Anti-microbial activity of the leaves of Bauhinia tomentosa Linn. Indian J. Pharm. Sci., 67, 732-736.
- Nachiar, G.S. and S. Sameemabegum (2023) A Comprehensive Review of Pharmacognostical, Phytochemical and Anti-microbial investigation towards Bauhinia tomentosa L.. Res. J. Pharmacogn. Phytochem., 15, 255-263.
- Risa J, A. Risa, A. Adsersen, B. Gauguin, G. I. Stafford, J. Van Staden and A. K. Jäger (2004). Screening of plants used in southern Africa for epilepsy and convulsions in the GAB A-benzodiazepine receptor assay. J. Ethnopharmacol., 93, 177-182.

- Sathya, B, G. Ariharasivakumar, D. C. Vimalson, M. Subramani and M. Magesh (2011) Psychopharmacological evaluation of ethanolic extract of leaves of Bauhinia tomentosa L. in mice. Int. J. Pharm. Technol., 3, 3693-3709.
- Swarnalatha D, K.B. Madhu, T. Satyanarayana and R..P. Mallikarjuna (2010) Antimicrobial activity of Bauhinia tomentosa and Bauhinia vahlii roots. Pharmacogn. Mag., 6, 204-207.
- Tiwari, V. and A. Singh (2013) Elucidation of possible mechanism of anti-nociceptive and anti-oxidant potential of Bauhinia tomentosa extracts in experimental animal models. Nat Prod J., 3, 309-316.
- Tiwari, V. and A. Singh (2014) Evaluation of antihyperglycemic potential of Bauhinia tomentosa standardized extracts in streptozotocin-induced diabetic rats. Iran. J. Pharm. Sci., 10. 1-14.
- Tiwari, V. and A. Singh (2015) Comparative analysis of Bauhinia tomentosa L. and Kalanchoe pinnata Lam extracts with regard to their antinociceptive and antipyretic potentials in experimental animal models. Int. J. Green Pharm., 9, 32-38.

Corresponding Author

Memona Fatima

Department of Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences,

University of Karachi, Karachi, 75270, Pakistan

Email: memona.qazi90@gmail.com

Submitted or	n 12-09-2025
Revised on	21-09-2025
Accepted on	24-09-2025